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Preface

In this book, several contributions to the area of granular computing are presented: a
nature-inspired granulating algorithm, various techniques for forming higher-type
information granules, and an application comparison of various types of informa-
tion granules. All research was done with the intention of analyzing the general
properties of some core concepts of granular computing, such as the information
granulation, the principle of justifiable granularity, and higher-type information
granule formation. All information granules were represented via fuzzy sets, either
type-1, interval type-2, or general type-2 fuzzy sets. And all proposed approaches
are derivative of hybrid intelligent algorithms, such that they automate the modeling
from raw data to final fuzzy granular model.

This book is intended as a reference for engineers who wish to dwell into
applications of more complex algorithms inspired by granular computing, for
aspiring graduate students who desire to better understand how information gran-
ules can be formed, or for scientists who want to keep up to date on current research
trends on granular computing focused on higher-type information granule forma-
tion, or to assess new areas of opportunity where research has yet to be carried out.

In Chap. 1, a short introduction to the book is given, where a broad set of
granular computing core concepts are mentioned, as well as a brief description of
contributions, applications, and general explanation of the proposed methods is also
shown.

In Chap. 2, recommended background and theory is given, where current defi-
nitions of many used computational intelligence techniques are shown, as well as a
deeper description of granular computing concepts is used throughout the book.

In Chap. 3, the embodiment of all carried out research is placed here from a
nature-inspired information granulating technique, to multiple approaches for
forming higher-type information granules.

In Chap. 4, a detailed description of carried out experimentation is shown, where
each proposed technique results are summarized, giving acute understanding of the
performance capabilities of the proposed algorithms.
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In Chap. 5, concluding remarks regarding research done is shown with the focus
of granular computing concepts and how they help improve the model performance,
meaningfulness, and interpretability.

We would like to express our gratitude to out supporting agency CONACYT for
the opportunity given to us by providing us grants to perform our research. We
would also like to thank the institution Autonomous University of Baja California
for supporting us, our families for keeping us motivated, and all people who have
contributed to the success of our research, either directly or indirectly.

Tijuana, Mexico Mauricio A. Sanchez
March 2016 Oscar Castillo

Juan R. Castro
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Chapter 1
Introduction

In Computational Intelligence, an important area of application is that of model
generation, especially when based on sampled data. Such modeling requires the use
of specialized algorithms that focus on different aspects based on the needs of the
final model or how the data is structured, this entails having special requirements
per case. Although the performance of most data modeling techniques is very
acceptable, most still lack a certain detail which could enrich them, that is, to ensure
the entire process from start to finish focuses solely on the meaningfulness of the
model as well as the interpretation.

In this book, the main focus of how information models are determined by
carefully analyzing the structure of the data itself and form meaningful models is
examined in how model generation gains better insight by using the concept of
Granular Computing, and how the benefits of using such concepts help improve the
core functionality of modeling from information as well as providing better
information models which not only provide a good representation but also has
improved interpretation capabilities.

Shown in Fig. 1.1 is a description of how information on some known infor-
mation in some knowledge domain, as taken from samples, measurements, or
readings can be transformed via some information granulation process into a col-
lection of information granules (G1, G2, G3 and G4) which are formed on the basis
that each information granule is built upon specific properties of the domain
knowledge from which is was formed from. Not only is it sufficient to have
information granules which perform well, but also that they are the correct size, that
is, that the domain knowledge that each information granule represents is rightfully
situated.

There are many research contributions in this book, all focused on applying the
concepts of Granular Computing. One such contribution is the proposal of a nature
inspired granulating algorithm, which takes a sample of some information and via
the concept of Newtonian gravitational forces, finds similarities between all

© The Author(s) 2017
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information, thus creating different sized information granules which dynamically
adapt to best present the meaningfulness of each individual core concept each
information granule embodies; and through a learning technique the framework for
a fuzzy inference system is adjusted based on available numerical evidence to form
a complete granular model which can be inferred upon. A series of other contri-
butions are also given which define multiple approaches to capturing uncertainty
from data and implanting it into higher-type information granules, such as mea-
suring differences in overlapping information granules on different viewpoints of
the same domain knowledge; as well as via quantization of dispersion in the
numerical evidence which formed each individual information granule; also,
through an application of the principle of justifiable granularity as basis for finding
dissimilarities in information granules; or by using the concept of numerical

Fig. 1.1 Basic concept of
information granulation. From
transforming information
from some domain into
multiple information granules
which capture the hidden
relationships which is
conformed from properties of
the domain knowledge

2 1 Introduction



evidence to create non-homogeneous higher-type fuzzy information granules. And
lastly, an application example of how Granular Computing is used to solve a mobile
robot’s motion is also depicted and the performance comparison between different
types of fuzzy information granule representations, such that normal fuzzy infor-
mation granules are compared to higher-type fuzzy information granules.

As information granules require a medium for representing concepts of infor-
mation, in this book, all representation mediums are in the form of fuzzy sets, such
that fuzzy information granules are used throughout. These fuzzy information
granules are a good medium because they can be adapted to represent many types
of information granules, such as single points in the case of overly specific infor-
mation granules; intervals, where a anything between such interval represents
something of importance; fuzzy sets, such as Gaussian functions which define
varying degrees of importance of information depending on the numerical location
of such data; and type-2 fuzzy sets, much like Gaussian functions yet they also
define a specified degree of uncertainty which lead to the representation of
higher-type information granules.

This book is organized as follows: Chap. 2 presents the background and theory
used by the rest of the book; Chap. 3 gives a description of all proposed methods;
Chap. 4 shows a series of experiments based on the proposed methods, and an
application of the usage of fuzzy granular models in a fuzzy control experiment;
finally, Chap. 5 presents the conclusions of all carried out research in this book.

1 Introduction 3
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Chapter 2
Background and Theory

The focus of this book emphasizes the field of Granular Computing, where by
nature is a vast area still under development. This section summarizes this matter as
well as derived topics which aid Granular Computing, such as Fuzzy Sets and
clustering algorithms.

2.1 Granular Computing

Granular Computing (GrC) is an area which was conceived by L.A. Zadeh in 1979
[1] which tries to adequate information granules to the information data that it tries
to model. That is, an information granule is an atomic expression derived from an
extracted model via a sample of data, where such granule can be small as to obtain a
specific description of a part of a model, or coarser, denoting less precision and
more generality. This being controlled by the requirements of the final granular
model.

GrC is inspired by how the human brain processes information, in how it takes
sets of factual data as to get a representation where a decision is required, then
groups such data into different levels of resolution where each level can be
ambiguous or very specific, suited to what can more effectively give an answer and
finally make a correct decision based on collected data. With this in mind, GrC tries
to reproduce this very behavior and take it into a computational algorithm which
takes data, forms information granules and obtains a model more in affinity with
reality.

It must be noted that GrC does nothing by itself; instead it works in conjunction
with other algorithms where it applies its core theories and methodologies in order
to obtain better information granules, and as such obtain better granular models.

© The Author(s) 2017
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2.2 Information Granule Representations

A key topic in GrC is information granule representation, where the simplest form of
representation is by means of intervals, by which a delimitation of granule size exists
thus having clear knowledge of what data is covered by such information granule.
A clear example of this could be an age range, where the Universe of Discourse
covers from 0 to 100 years old, but since a more specific age range is desired, such as
40–57 years old, this clearly eliminates all data outside this range, i.e. the ranges 0–
39 years old and 58–100 years old is ignored. Although an interval is a simple
representation, interval arithmetic [2] is not, and still requires more research to fully
implement a viable solution to fuse GrC with interval arithmetic.

Another information granule representation schema which is also simple is Set
Theory, represented by collection of items of the same type or categorical type.
Similar to representation by intervals, an item either belongs or does not to a group,
or set. Yet the main difference with intervals is that its mathematical operations are
very mature. Although, as its representation schema is simple, more real world
information granules cannot be properly represented.

The list of existing information granule representations is quite extensive, e.g.
quotient space [3], fuzzy sets [4], rough sets [5], neural networks [6], shadowed sets
[7], neutrosophic sets [8]; giving detailed attentions to each one would require
much unnecessary attention which will not be given. Therefore, the chosen and
used representation for information granules in this book is Fuzzy Sets (FS) since
they are a representation which have much similarities with the core concept of
GrC, which is to represent human cognition where imprecision is used throughout
linguistic variables to represent granular models. With FSs an imprecise belongi-
ness value can be represented where such imprecision is between the interval [0, 1];
zero, being that it does not belong at all to the set, one, being that it completely
belongs to the set, and where any in-between value represents a certain degree of
belonging to the set. With this in mind, FSs are an excellent representation for
information granules, where in comparison with intervals or normal sets, where a
datum either belongs or not to a set, with FSs a datum can simultaneously belong to
multiple sets, although at different degrees, which is similar to human cognition.

2.3 Principle of Justifiable Granularity

This principle is a technique which purpose is to specify the adequate size of an
information granule in such a way that it is not too small and has sufficient coverage
of experimental data while at the same time it does not have too much coverage as
to over generalize the granule. Figure 2.1 visually shows both these differences.

A double optimization must exist which takes into account both objectives:

1. The information granule must be as specific as possible.
2. The information granule must have sufficient numerical evidence.

6 2 Background and Theory



This double optimization is performed twice, as the length of the information
granule has two sides which must be optimized, the left side interval from the
Median of the data sample and the right side interval from the median of the data
sample, as shown in Fig. 2.2. Both intervals, a and b, start from the Med(D) of
available data D which formed said information granule.

Each information granule’s set, shown in Eq. (2.1), is important, since it is the
basis for finding the required lengths used to obtain a meaningful information
granule. Where xk are the individual data which belong to the information granule
X.

set xk 2 Xð Þ ð2:1Þ

The set of is separated into two sections, as shown in Eqs. (2.2) and (2.3), as to
conform to each interval, a and b respectively.

set xk 2 X; [Med Dð Þð Þ ð2:2Þ

set xk 2 X; \Med Dð Þð Þ ð2:3Þ

As for the required double optimization, it is obtained by maximizing Eqs. (2.4)
or (2.5), for a and b respectively. Which uses a user criterion a 2 0; amax½ �, where
amax obtains the smallest possible length achieved by the principle of justifiable
granularity, and can be obtained via Eqs. (2.6) and (2.7), for a and b respectively.
Described as the natural logarithm of the cardinality of the chosen side (a or
b) divided by the length of the closest datum x1 to Med(D).

V a�ð Þ ¼ maxa\MedðDÞ V að Þ½ � ð2:4Þ

Fig. 2.1 Visual representation of two different objectives in data coverage, where a full
experimental data coverage is achieved by the information granule, and b a more specific
information granule covering only a portion of the experimental data

Fig. 2.2 Intervals a and b are separately optimized based on available numerical evidence from
the formation of said information granule. Where both lengths start at the median of the
information granule

2.3 Principle of Justifiable Granularity 7



V b�ð Þ ¼ maxb[MedðDÞ V bð Þ½ � ð2:5Þ

aamax ¼
card xk 2 X;\Med Dð Þð Þ

Med Dð Þ � x1j j ð2:6Þ

abmax ¼
card xk 2 X; [Med Dð Þð Þ

Med Dð Þ � x1j j ð2:7Þ

Regarding the double optimization itself, shown in Eqs. (2.8) and (2.9), for
a and b respectively. Which is an integration of the probability density function
from Med(D) to all prototypes of a, or b, multiplied by the user criterion for
specificity a. In Appendix A, the demonstration of how Eqs. (2.8) and (2.9) are
transformed into computational models is shown. And, in Appendix C.1, the code
which computes the values for a and b is shown.

V að Þ ¼ e �a Med Dð Þ�aj jð Þ
ZMed Dð Þ

a

p xð Þdx ð2:8Þ

V bð Þ ¼ e �a b�Med Dð Þj jð Þ
Zb

Med Dð Þ

p xð Þdx ð2:9Þ

As an example of the behavior of V(b) in respect to the optimal length in respect
to the chosen value of a, Fig. 2.3 shows how the peak of each curve locates the
optimum length.

Finally, another example is shown, in Fig. 2.4, that demonstrates how the curve
optimization affects both intervals, a and b, of the information granule. Here, it can
clearly be seen where the optimal length is located in respect the peak of the
optimization curve from the principle of justifiable granularity.

A more detailed study of the behavior of the principle of justifiable granularity
can be found in [9].

2.4 Data Granulation Algorithms

To obtain granular models, help is needed from algorithms which can create these
models from experimental data. In GrC it is much more common to find machine
learning techniques rather than traditional statistical methods. With these intelligent
algorithms, the most common sub-group of algorithms are clustering algorithms,
due to their focus on finding similarities between the data itself and for differen-
tiating between these found groups. This action generates a model from the data.

8 2 Background and Theory



Fig. 2.3 Behavior of V(b) in respect to b, with changing values of a

Fig. 2.4 Effect of V(a) and V(b) on the final size of the information granule, when a ¼ 2

2.4 Data Granulation Algorithms 9



Found groups of similar data are now called information granules which rep-
resent abstract models of a portion of relevant information as obtained from a given
phenomenon. And the process of obtaining such information granules is called data
granulation.

There is a great quantity of existing clustering algorithms, and among the most
applied in GrC are K-Means [10] and Fuzzy C-Means (FCM) [11]. Where the
K-Means algorithm contains a partition matrix that specifies which datum exactly
belongs to which group, whereas the FCM algorithm specifies how much each
datum belongs to each group. In K-means, each datum can only belong to one
found group; while in FCM, each datum can belong to multiple groups, although in
different degrees.

Many more clustering algorithms exist which perform the task of granulating data,
such as the subtractive algorithm [12], or the fuzzy granular gravitational clustering
algorithm [13] which will be seen in more detail further down in this document.

2.5 Fuzzy Logic

Fuzzy Logic (FL) can be seen as an advancement from bivariate logic. Where only
two values can be expressed {0, 1}, whereas in FL values can be anything within the
interval [0, 1]. This interval can express different degrees of perception, such as not
too much, very little, or more or less. When used in a FS, aptly named a Type-1
Fuzzy Set (T1 FS), it can give better perceptual representations since ambiguities can
now the modeled. Although many perceptual situations can be modeled using T1 FS,
uncertainty is not one. For this, Interval Type-2 Fuzzy Sets (IT2 FSs) can be used,
where its model directly handles, apart from imprecision, uncertainty. As for the
complete model for Type-2 Fuzzy Sets, where T1 FSs and IT2 FSs are simplifica-
tions of Type-2 Fuzzy Sets. General Type-2 Fuzzy Sets (GT2 FSs) exist which in
essence have a better handling of uncertainty than IT2 FS, this is due to how
uncertainty is represented, instead of a 2D area, it is represented by a 3D volume.

2.5.1 Type-1 Fuzzy Sets

A T1 FS A, expressed by lA xð Þ where x 2 X, described as A ¼ x; lA xð Þð Þjx 2 Xf g.
A visual example is shown in Fig. 2.5, where a generic Gaussian membership
function represents a T1 FS.

A Type-1 Fuzzy Logic System (T1 FLS) can be easily described by a block
diagram, shown in Fig. 2.6.Where the Fuzzifier takes crisp inputs andmaps them into
FS; the Inference, based on Rules, maps Fuzzy Sets from the antecedents to FSs from
the consequents; finally, the Output Processor defuzzifies and outputs a crisp value.

The rule set for T1 FLSs are in the format as shown in Eq. (2.10) where the relation
between the input and output space ismapped.WhereRl is a specific rule, xp is input p,
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Fl
p is a membership function on rule l and input p, y is the output on membership

function Gl. Both F and G are in the form of lF xð Þ and lG yð Þ respectively.

Rl : IF x1 isFl
1 and . . . and xp isFl

p; THEN y isGl; where l ¼ 1; . . .;M ð2:10Þ

As for the inference which calculates the compatibility between the antecedents
and the consequents, using t-norms (~�), Eq. (2.11) shows the basic methodology

Fig. 2.5 Example of a generic T1 FS in the form of a Gaussian membership function

Fig. 2.6 Block diagram describing the main components of a T1 FLS

2.5 Fuzzy Logic 11



required to process such t-norms. Where lBl is the consequent membership function
after being processed by the antecedents and Y is the domain space for the
consequents.

lBl yð Þ ¼ lGl yð Þ~� sup
x12X1

lx1 x1ð Þ~�lFl
1
x1ð Þ

� �
~� � � � ~� sup

xp2Xp

lxp xp
� �

~�lFl
p
xp
� �" #( )

;

y 2 Y

ð2:11Þ

The defuzzification process can be achieved in many ways, each obtaining
similar results. Examples of common defuzzifiers are centroid, shown in Eq. (2.12);
center-of-sums, shown in Eq. (2.13); or heights, shown in Eq. (2.14). Where yi is a
discrete position from Y, yi 2 Y , lB yð Þ is a FS which has been mapped from the
inputs, cBl denotes the centroid on the lth output, aBl is the area of the set, and �yl is
the point which has the maximum membership value in the lth output set.

yc xð Þ ¼
PN

i¼1 yilB yið ÞPN
i¼1 lB yið Þ ð2:12Þ

ya xð Þ ¼
PM

l¼1 cBlaBlPM
l¼1 aBl

ð2:13Þ

yh xð Þ ¼
PM

l¼1 �y
llBl �yl

� �
PM

l¼1 lBl �ylð Þ ð2:14Þ

2.5.2 Type-2 Fuzzy Sets

Type-2 Fuzzy Sets can be used in two forms, by its simplified form, i.e. IT2 FSs; or
its complete form, i.e. GT2 FSs. Both will be briefly described in this section.

An IT2 FS ~A is represented by l~A
xð Þ and l~A xð Þ which are the lower and upper

membership functions respectively of l~A xð Þ, described as
~A ¼ x; uð Þ; l~A x; uð Þ ¼ 1

� ��� 8 x 2 X; 8 u 2 0; 1½ �� �
, where x is a subset of the

Universe Of Discourse X, and u is a mapping of X into [0, 1]. A visual example is
shown in Fig. 2.7, where a generic Gaussian membership function with uncertain
standard deviation represents an IT2 FS.

An Interval Type-2 Fuzzy Logic System (IT2 FLS) can be easily described by a
block diagram, shown in Fig. 2.8. Where the Fuzzifier takes crisp inputs and maps
them into FS; the Inference, based on the Rules, maps Fuzzy Sets from the ante-
cedents to FS from the consequents; then, the output can be chosen between
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obtaining a Type-reduced set (T1 FS) or Output Processor which defuzzifies and
outputs a crisp value.

The rule set of an IT2 FLS maintains the same format as for the T1 FLS, but with
a small notation difference, as shown in Eq. (2.15).

Rl : IF x1 is ~Fl
1 and . . . and xp is ~Fl

p; THEN y is ~Gl; where l ¼ 1; . . .;M

ð2:15Þ

Fig. 2.7 Example of a generic IT2 FS in the form of a Gaussian membership function with
uncertain standard deviation

Fig. 2.8 Block diagram describing the main components of an IT2 FLS
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The IT2 FLS inference can be summarized by Eq. (2.16). Where f l and f
l

represent the firing sets defined by Eqs. (2.16) and (2.17), and b is a interval defined
by Eqs. (2.18) and (2.19).

l~B yð Þ ¼
Z

b2 f 1 ~�l
~G1

yð Þ
	 


v...v f N ~�l
~GN

yð Þ
	 
	 


; f
1
~��l~G1 yð Þ

	 

v...v f

N
~��l~GN yð Þ

	 
	 
	 
 1=b; y 2 Y

ð2:15Þ

f l x0ð Þ ¼ l~Fl
1
x01
� �

~� � � � ~� l~Fl
p1

x0p
� �

ð2:16Þ

f
l
x0ð Þ ¼ �l~Fl

1
x01
� �

~� � � � ~� �l~Fl
p1

x0p
� �

ð2:17Þ

bl yð Þ ¼ f l ~� l~Gl yð Þ ð2:18Þ

b
l
yð Þ ¼ f

l
~� l~Gl yð Þ ð2:19Þ

A common technique for type-reducing an IT2 FLS is center-of-sets (cos),
shown in Eq. (2.20). Where Ycos is an interval set defined by two points yil; y

i
r

	 

,

which are obtained from Eqs. (2.21) and (2.22). Although other type-reducing
techniques do exist, such as [14, 15].

Ycos xð Þ ¼
Z

y12 y1l ;y
1
r½ �

. . .

Z
yM2 yMl ;y

M
r½ �

Z
f 12 f�

1;�f 1
h i . . .

Z
f M2 f�

M ;�f M
h i 1

,PM
i¼1 f

iyiPM
i¼1 f

i
ð2:20Þ

yl ¼
PM

i¼1 f
i
l y

i
lPM

i¼1 f
i
l

ð2:21Þ

yr ¼
PM

i¼1 f
i
r y

i
rPM

i¼1 f
i
r

ð2:22Þ

If a crisp output value is desired, a defuzzification of the type-reduced set yl and
yr can be done, as shown in Eq. (2.23).

y xð Þ ¼ yl þ yr
2

ð2:23Þ

A GT2 FS ~~A described by ~~A ¼ x; uð Þ; l~~A
x; uð Þ

� ���� 8 x 2 X; 8 u 2 0; 1½ �
n o

.

Where l~~A
x; uð Þ is the set of secondary membership functions which form the

uncertainty on the GT2 FS, x is the domain of the primary membership function,
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and u is the domain of the secondary membership functions. Figure 2.9 shows a
sample GT2 FS as seen from an orthographic top view for a generic Gaussian
primary membership function with uncertain mean and a Gaussian secondary
membership function. Figure 2.10 also shows the same GT2 FS but with an iso-
metric view.

Fig. 2.10 Example of a GT2 FS in the form of a Gaussian primary membership function with
uncertain mean and Gaussian secondary membership function, as seen from an isometric view

Fig. 2.9 Example of a GT2 FS in the form of a Gaussian primary membership function with
uncertain mean and Gaussian secondary membership function, as seen from a orthographic top view
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The rule set for a GT2 FLS maintains the format for T1 FLSs and IT2 FLSs, but
with a slight notation difference, shown in Eq. (2.24).

Rl : IF x1 is
~~F
l
1 and . . . and xp is

~~F
l
p; THEN y is ~~G

l
; where l ¼ 1; . . .;M ð2:24Þ

The inference of a GT2 FLS is quite different from the previous shown FLS (T1
and IT2), as the complete and original inference is very computational complex,
hence the FLS simplifications of T1 and IT2. Yet it can be summed by two main
operations, meet and join, shown in Eqs. (2.25) and (2.26) respectively. Analogous
to the inference operations of either T1 FLS or IT2 FLS, they are used together in
order to find the compatibility of the antecedents with the inputs, and accordingly
their mapping into the consequents space.

l~~A
xð Þtl~~B

xð Þ ¼
Z

u2Jux

Z
u2Jwx

fx uð Þ~�gx wð Þ= u _ wð Þ

2
64

3
75

8><
>:

9>=
>; ð2:25Þ

l~~A
xð Þ u l~~B

xð Þ ¼
Z

u2Jux

Z
u2Jwx

fx uð Þ ~� gx wð Þ= u ^ wð Þ

2
64

3
75

8><
>:

9>=
>; ð2:26Þ

The defuzzification section of a GT2 FLS uses a centroid technique, shown in
Eq. (2.27). Where C~~A

defines the centroid of a GT2 FS, and hi is a combination
associated to the secondary degree fx1 h1ð Þ ~� � � � ~� fxN hNð Þ. It must be noted that this
defuzification is of O(nn), which basically makes it uncomputational as the dis-
cretization increases. Although newer techniques exist which can highly reduce this
into a more manageable and viable algorithm, via approximations.

C~~A
¼

Z
h12Jx1

:::

Z
hN2JxN

fx1 h1ð Þ ~� ::: ~� fxN hNð Þ½ �
,PN

i¼1 xihiPN
i¼1 hi

ð2:27Þ

GT2 FLS approximations reduce the computational complexity of its original set
operations, especially the defuzzification. These approximation techniques involve
reducing the three-dimensional GT2 FS into multiple, and manageable, IT2 FSs.

One such approximation technique is done by obtaining an α-Plane [16] via the
union of the α-cuts on all vertical slices on ai. An α-Plane can be defined by
Eq. (2.28) where ~Aa is an IT2 FS.

~Aa ¼
Z

8x2X

Z
8u2 0;1½ �

x; uð Þjfx uð Þ� af g ð2:28Þ
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Another approximation technique is a zSlice [17], which obtains a plane by
calculating the intervals for all vertical cuts on a given z. This zSlice is defined by
Eq. (2.29). Here, the difference between an α-Plane and a zSlice is that an α-Plane
performs it cuts on a


~Aa, while a zSlice cuts on ~Za projected unto X � Y .

~Az ¼
Z

8x2X

Z
8y2 0;1½ �

z= x; yð Þ ð2:29Þ

When an α-Plane or a zSlice is calculated, the inference of an IT2 FLS is used.
The union of all α-Planes or zSlices is defined by Eqs. (2.30) and (2.31) for
α-Planes and zSlices respectively. Where R~Aa

is one horizontal slice at level α.

~~A ¼
[

8a2 0;1½ �
R~Aa

ð2:30Þ

~~A ¼
[

8z2 0;1½ �
~Az ð2:31Þ

2.6 Fuzzy Granular Computing

Having seen a description of what both GrC and Fuzzy Logic are, the term Fuzzy
Granular Computing can be inferred from a combination of both. It is the direct
application of the abstract concepts from GrC specifically when used with Fuzzy
Logic. The concept of a FS is analogous to the concept of an Information Granule,
where each represents an abstract model for a collection of data. And a collection of
FSs, or Fuzzy Information Granules, becomes a Fuzzy Granular model.
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Chapter 3
Advances in Granular Computing

This book is a research compendium in the area of Fuzzy Granular Computing.
Two main branches are handled, a proposed fuzzy granulating algorithm, and
higher-type information granule formation, although more work was performed on
the latter.

3.1 Fuzzy Granular Gravitational Clustering Algorithm

A Fuzzy granulation algorithm was proposed in [1, 2] which uses the concept of
gravitational forces to form information granules, and was aptly named Fuzzy
Granular Gravitational Clustering Algorithm (FGGCA).

It is based on Newton’s Law of Universal Gravitation, as shown in Eq. (3.1)
which calculates the gravitational force between two bodies. Where Fg is the
gravitational force, G is a gravitational constant which equals 6.674 × 10−11, m1

and m2 are the masses of both bodies, and x1; x2k k is the distance between the
centers of mass between both bodies.

Fg ¼ G
m1m2

x1; x2k k2 ð3:1Þ

The premise of the algorithm is that gravitational forces are simulated inside a
confined and normalized space [−1, 1], where each datum represents a point body
with a mass of 100 kg. Here, each attribute, or feature, of a dataset is considered a
dimension in Euclidean n-space.

The algorithm starts by first calculating all gravitational forces between each data
point, as shown in Eq. (3.2). Where Fij is the gravitational force between the i-th
and j-th data points, and i 6¼ j.
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Fij ¼ G
mimj

xi; xj
�� ��2 ð3:2Þ

The sum of all gravitational forces per each data point must then be calculated,
as shown in Eq. (3.3), this calculates an individual gravitational force density for
each data point relative to the rest of the data points.

Fdensity
i ¼

Xn
j¼1

Fij ð3:3Þ

A premise is given where data points with more gravitational force density are
more likely to be actual cluster centers than those with the lowest densities. For this,
all densities must be sorted into descending order, from highest density to lowest
density. This also rearranges all data points, from x 2 X to xsorted 2 X.

Having sorted all data points, the next step is to start joining nearby, and
gravitationally dense, points with each other in a pairwise manner. This process is
done iteratively for all data points while the following condition is true: IF
min xi; xj

�� ��� �
\radius THEN start joining data points. Where i 6¼ j, and radius is a

user criterion used to decide the maximum size of each information granule. Here,
the behavior of different values of radius affect in such a way that for a small size,
more information granules will be found, whereas if the value is high, there will be
less amount of information granules. When the condition is met, it means that xi is
more gravitationally dense than xj therefore xi absorbs xj, as shown in Eqs. (3.4)
and (3.5).

xi [ xj ð3:4Þ

mi [mj ð3:5Þ

The joining of xj unto xi updates the position of xi, via Eqs. (3.6)–(3.8). Where
qbarycenter is the gravitational center of mass between both data points, k is a scaling
factor between xi and xj.

qbarycenter ¼
mj

mi þmj

� �
xi; xj

�� �� ð3:6Þ

k ¼ qbarycenter
xi; xj

�� �� ð3:7Þ

xi ¼ xi þ k xj � xi
� � ð3:8Þ

The described algorithm iterates this process for all x 2 X until all data points
have been joined together, or the distance in the condition previously shown, with
the user criterion of radius, is not met. Each iteration of this process usually reduces
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the cardinality of X to about half its original size, all while maintaining the original
sum of mass in the system.

After this iterative process ends the final step before iterating once again from
Eq. (3.2), is to adjust the user criterion value of radius in order to control the
amount and size of each information granule, this is done via Eq. (3.9). Where D is
another user set criterion for how fast radius will change.

radius ¼ radius� D ð3:9Þ

The algorithm will iterate until all remaining interactions are beyond radius.
Once finished, the centers for each information granule are obtained; the following
description will now show how the information granule’s size is calculated. These
information granule sizes are also found by the help of gravitational forces.

Since FGGCA is fuzzy in nature, membership functions form the rule set of the
model. Therefore Gaussian membership functions were chosen to represent each
individual fuzzy information granule. As a result, two parameters are required, a
location point x (as calculated by the previously described algorithm) and a standard
deviation r to delimit the size of the fuzzy information granule.

To calculate the required r values, let us define the found cluster center as xc.
Where the premise is to find which cluster center xc exerts more gravitational force
upon x when xc 6¼ xi, when found xi 2 xc is established. This process iterates
through all x 2 X.

The algorithm to find the size of the fuzzy information granules is dictated by
first obtaining the sets of data points upon which each xc have more influence over,
as shown in Eq. (3.10). Where Fj is the gravitational force exerted between xcj and
xi, with conditional xcj 6¼ xi. Afterwards after xi iterates through all xcj , the Fj which
exerts more gravitational influence adds xi into its set xsetOfClusterj .

Fj ¼ G
mc

j mi

xcj ; xi
��� ���2 ð3:10Þ

When all x 2 X are transferred into xsetOfClusterj the rck values can now be cal-
culated for each xc, as shown in Eq. (3.11). Where rck is the standard deviation for
each cluster center xc on the k-th input.

rck ¼ std xsetOfClusterj
� � ð3:11Þ

The described algorithm so far has given a technique for calculating fuzzy
information granules which are represented by the antecedents in a FLS, yet the
antecedents have not been reviewed. The proposed granular FLS has
Takagi-Sugeno-Kang (TSK) [3–5] consequents. To adjust these linear first Order
polynomials, a known method based on Least Square Estimator method (LSE) to
adjust all coefficient parameters [6] is used.
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The consequent parameter adjustment considers c cluster centers
x1; x2; . . .; xc

� �
. The input space variables are represented by yi, and the output

space variables are represented by zi. Where zi is in the form of a first Order linear
function, as shown in Eq. (3.12), Gi are the input constant parameters, and hi the
constants for each zi.

zi ¼ Giyþ hi ð3:12Þ

As each xi defines a fuzzy rule, and training data x exists, the firing strengths xi

per each rule are calculated via Eq. (3.13), with the consideration that all mem-
bership functions are Gaussian. Where each xi is used alongside the obtained rc and
xc.

xi ¼ e�
1
2

xi�xc

rc

�� ��2

ð3:13Þ

A parameter si is defined in order to use LSE, as shown in Eq. (3.14). Which can
be rewritten as Eq. (3.15). Now, zi can be defined to the form shown in Eq. (3.16),
which describes a matrix of parameters to be optimized by the LSE method, taking
the form of AX = B.

si ¼ xiP
xi

ð3:14Þ

z ¼
Xc

i�1

sizi ¼
Xc

i¼1

si Gixþ hið Þ ð3:15Þ

zT1
..
.

zTn

2
64

3
75 ¼

s1;1xT1 s1;1 � � � sc;1xT1 sc;1
..
.

s1;nxTn s1;n � � � sc;nxTn sc;n

2
64

3
75

GT
1

hT1
..
.

GT
c

hTc

2
666664

3
777775 ð3:16Þ

where,

B ¼
zT1
..
.

zTn

2
64

3
75 ð3:17Þ

A ¼
s1;1xT1 s1;1 � � � sc;1xT1 sc;1
..
.

s1;nxTn s1;n � � � sc;nxTn sc;n

2
64

3
75 ð3:18Þ
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X ¼

GT
1

hT1
..
.

GT
c

hTc

2
666664

3
777775 ð3:19Þ

Knowing that LSE has the form AX ¼ B. Where B, in Eq. (3.17), is a matrix of
the output values; A, in Eq. (3.18), is a matrix of constants; and X, in Eq. (3.19), is a
matrix of estimated parameters. The final solution is given by Eq. (3.20).

X ¼ ATA
� ��1

ATB ð3:20Þ

As already shown, the FGGCA is separated into two sections, apart from the
TSK consequent learning algorithm, which are finding the clusters, and calculating
the information granule sizes. The two following procedures summarize both this
processes. In Appendix C.2, used code is shown.

procedure findClusters(x, radius, D)

1. LOOP while INTERACTIONS_EXIST==TRUE
2. INTERACTIONS_EXIST=FALSE; initialize exit condition for clustering

3. 2
ji

ji
ij

x,x

mm
G=F ; calculate all interacting gravitational forces in the system, where ji ≠

4. ∑
n

=j
ij

density
i F=F

1

; calculate the gravitational density of iF

5. )Fsort(x,=x density
i ; sort x in reference to density

iF . Where the ix with the highest gravitational 

density is set as the first value in x, and each ix is subsequently set as the 

gravitational density is reduced

6. LOOP foreach i in ix

7. IF radius<)x,x( jimin THEN; verify if there are points which can interact and join 

together, where ji ≠
8. INTERACTIONS_EXIST=TRUE; indicate that another iteration can be done

9. ji mm ∪ ; join the mass of jx unto ix

10. ji
ji

j
barycenter x,x

m+m

m
=ρ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
; calculate the barycenter distance between 

ix and jx

11.
ji

barycenter

x,x

ρ
=λ ; calculate a scaling factor λ

12. ( )ijii xxλ+x=x − ; update de position of ix to its new location, based on 

λ
13. Δradius=radius × ; update the value of radius in relation to Δ
14.RETURN x
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procedure findSizeOfGranules(x, xc)

1.
2

i
c
j

i
c
j

j
x,x

mm
G=F ; calculate all interacting gravitational forces in the system, where i

c
j xx ≠

2. ( )jindex
j F=F max ; find the index of jF which exerts a higher gravitational force.

3. index
jFjersetOfClust x=x ; assign to a set of 

jersetOfClustx the value of ix which index is 
index
jF

4.LOOP foreach k in NumberOfInputs( x )

5. ( )
jersetOfClust

c
k xstd=σ ; calculate the standard deviation for each input variable of each cluster

6.RETURN cσ

In Appendix B.1, some figures are shown which visually describe the behavior
of the FGGCA when dealing with 2D data.

3.2 Higher-Type Information Granule Formation

Most research in this book focuses on the formation of Fuzzy Higher-Type infor-
mation granules which leads to multiple approaches being presented.

3.2.1 A Hybrid Method for IT2 TSK Formation Based
on the Principle of Justifiable Granularity and PSO
for Spread Optimization

An initial method for the formation of IT2 TSK FIS was proposed in [7] which
introduces a method for using the principle of justifiable granularity as a means to
heuristically obtaining an interval which reflects the IT2 FS uncertainty, afterwards
its IT2 TSK consequent spreads are optimized via a Particle Swarm Optimization
(PSO) algorithm. This method described in more detail in the following paragraphs.

Considering that Gaussian membership functions with uncertain means will be
used, shown in Fig. 3.1, the required inputs of the proposed method are cluster
centers from any clustering algorithm as to define the initial rule set for the IT2 FIS
and subsets of data which are best represented by each cluster center.

The process which obtains the representative subsets for each cluster center is
executed via Eq. (3.21). Where xi; xj

�� �� is the Euclidean distance in n-space
between a cluster xc and a datum xi.
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xc; xik k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
xc � xið Þ2

q
ð3:21Þ

When all subsets are found the information granule’s coverage must be calcu-
lated, i.e. the standard deviation r. This is done through Eq. (3.22). Where rj;k is
the standard deviation of the j-th rule and k-th input, xi is each datum from the
subset obtained from Eq. (3.21), xj;kc is the cluster center for the j-th rule and k-th
input, and n is the cardinality of the subset.

rj;k ¼
Pn

i¼1ðxi � xj;kc Þ2
n� 1

ð3:22Þ

Up to this point a Type-1 Gaussian membership function can be created, but the
end product is an IT2 Gaussian membership function with uncertain mean. The
following process obtains the remaining required parameter to form the IT2 FS.

To obtain the uncertainty on the IT2 FS the principle of justifiable granularity is used
as a means to heuristically measure it. Done by forcing each information granule to its
largest coverage by using the user criterion value of amax on each side of the interval, as
described by Eqs. (2.6) and (2.7). When both intervals a and b are obtained, their
difference is used to heuristically measure the uncertainty for the IT2 FS, as shown in
Eq. (3.23). Where s is the measure of uncertainty for a specific information granule.

s ¼ a� bj j ð3:23Þ

The obtained value of s is used with Eqs. (3.24) and (3.25). Where the center
parameter of the IT2 Gaussian membership function with uncertain mean holds the
uncertainty of the IT2 FS, i.e. s offsets the mean of the Gaussian membership
function thus adding the uncertainty. This concludes the section for forming
Higher-type fuzzy information granules in the antecedents of an IT2 FLS.

ml
j;k ¼ xj;kc � sj;k ð3:24Þ

ml
j;k ¼ xj;kc þ sj;k ð3:25Þ

Fig. 3.1 Sample IT2 Gaussian membership function with uncertain mean
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The IT2 linear TSK consequents are calculated in a two step process. First, an
LSE algorithm [8, 9] is used twice, as the Gaussian membership function with
uncertain mean is parameterized by a left and right T1 Gaussian membership
function, the LSE is applied as if two T1 FLSs existed. When all TSK coefficients
are obtained, the average of both sets of parameters is used, as shown in Eq. (3.26).
Where ul and ur are the coefficient sets for the left and right side T1 FLSs, and u is
the set used for the proposed IT2 FLS. The code for this process is included in
Appendix C.3.

u ¼ ul þur

2
ð3:26Þ

The second part of the process for calculating the coefficients for the IT2 TSK
consequents is to obtain the spreads of each coefficient, with format as shown in
Eq. (3.27). Where c are the coefficients, x the dependent input variables, and s the
spreads.

yi ¼
Xp
k¼1

cikxk þ ci0 �
Xp
k¼1

jxkjsik � si0 ð3:27Þ

To adjust the spreads, a PSO algorithm [10] was chosen. Where the initial pop-
ulation is randomly generated with values within [0, 0.09], i.e. very small spreads. As
the PSO uses multiple parameters which can speed up the convergence to a good
result, the ones used here are shown in Table 3.1. Where three values, marked in
bold, specify how the optimization is desired. The individual acceleration factors are
fixed, this causes the PSO to search more slowly inside the confined space, otherwise
the spread significantly increases and that is not a desirable behavior. The rest of the
parameters are set to typical recommended parameter values.

The objective function for the PSO is another very important topic that must be
addressed in order to obtain the best possible solution. Shown in Eq. (3.28) is the
manually adjusted objective function. Where h is the RMSE of the output coverage,
and # is the RMSE of the size of the Footprint Of Uncertainty.

objVal ¼ 0:8 � hþ 0:2 � # ð3:28Þ

Table 3.1 PSO parameters
used for optimizing the spread
of the IT2 TSK linear
polynomials

PSO parameter Value

Number of particles 30

Number of iterations 50
Initial value of the individual-best acceleration factor 0.5
Final value of the individual-best acceleration factor 0.5

Initial value of the global-best acceleration factor 0.5

Final value of the global-best acceleration factor 0.5
Initial value of the inertia factor 0.9

Final value of the inertia factor 0.4
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Once the PSO concludes its 50 iterations, the spread values are expected to be
quasi-optimal, with some minor error on the FOU coverage, or optimal, with zero
error on the FOU coverage.

3.2.2 Information Granule Formation via the Concept
of Uncertainty-Based Information with IT2 FS
Representation with TSK Consequents Optimized
with Cuckoo Search

This approach, published in [11] uses the concept of uncertainty-based information
as a means to measure uncertainty and use it for the formation of IT2 FS ante-
cedents. Its consequents are IT2 TSK linear polynomials which are optimized via a
Cuckoo Search [12] algorithm.

The concepts of uncertainty and information are closely related in such a way
that their fundamental characteristic is that involved uncertainty from any situation
is a result from information deficiency. Therefore, an assumption can be made
where uncertainty is reduced by obtaining new relevant information, .e.g. obtaining
new experimental results, and by measuring the difference between both sets of
information (a priori and a posteriori), then, can some uncertainty can be measured.

In Fig. 3.2, the shown diagram represents the general idea behind the behavior
of uncertainty-based information. A reduction of uncertainty can be obtained via the
difference of two uncertain models from the same information. That is, an a priori
uncertainty model is obtained with a first sample of information, where as an a
posteriori uncertainty model is obtained with a second sample of information
related to the same situation.

With an inspiration on uncertainty-based information, higher-type information
granules can be formed via the capture and measurement of uncertainty.

Through a first sample of information D1, an uncertain model can be created.
And through a second sample of information D2 another similar uncertain model
can be also created. These two models of uncertainty are analogous to the models in

Fig. 3.2 Diagram of the behavior of the uncertainty-based information where uncertainty is
reduced by the difference between two uncertain models of the same information
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the theory of uncertainty-based information, a priori and a posteriori uncertainty
models. As uncertainty-based information tries to reduce uncertainty by measuring
it, for the purpose of this proposed technique, it uses such measurement of
uncertainty and integrates it into an IT2 FS.

The proposed approach works by taking two sets of samples from an information
source, D1 and D2, and obtaining two Gaussian Type-1 membership functions. As
there will probably be a difference between the two taken samples, this difference is
what ultimately reflects the direct measurement of uncertainty which is then
imposed unto an IT2 Gaussian membership function with an uncertain standard
deviation. This behavior is shown in Fig. 3.3.

An implementation to this approach uses the Subtractive clustering algorithm [6]
to obtain rule sets. The following algorithm summarizes how the fuzzy
Higher-Type information granules are formed:

1. Obtain first rule set from D1, comprised of centers m and standard deviations r1.
Where r1 is obtained by finding sets from data closest to each mi.

2. Obtain r2 viaD2.Where r2 is obtained byfinding sets from data closest to eachmi.
3. Form antecedent IT2 membership functions by using found parameters m, ri1

and ri2.
4. The consequents are obtained via an optimization of IT2 TSK linear polyno-

mials with a Cuckoo Search optimization algorithm [12].

Another implementation uses the Fuzzy C-Means clustering algorithm [13] to
obtain rule sets. This implementation is a better reflection of the concept of a priori
and a posteriori uncertainty models. Appendix C.4 shows the code which executes
this algorithm.

1. Obtain first rule set from D1, comprised of centers m1 and standard deviations
r1. Where r1 is obtained via the U1 matrix partition, where the highest value
represents to which mi

1 each datum belongs to. This obtains the a priori
uncertainty model.

2. Obtain first rule set from D2, comprised of centers m2 and standard deviations
r2. Since the FCM randomly chooses an initial U partition matrix, to conform to
rule set similarity between both executions. The second FCM’s U partition

Fig. 3.3 Explanatory diagram of how the proposed approach measures and defines the
uncertainty, and forms an IT2 FS with such uncertainty
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matrix is initialized with the values of U1. Where r1 is obtained via the U2

matrix partition, where the highest value represents to which mi
1 each datum

belongs to. This obtains the a posteriori uncertainty model.
3. Form antecedents IT2 membership functions by obtaining the mean of mi

1 and
mi

2, and using both ri1 and ri2.
4. The consequents are obtained via an optimization of IT2 TSK linear polyno-

mials with a Cuckoo Search optimization algorithm.

3.2.3 Method for Measurement of Uncertainty Applied
to the Formation of IT2 FS

In this approach, by Sanchez et al. [14] a heuristic methodology is proposed which
based on the Coefficient of Variation can measure a degree of uncertainty from a
dataset and construct Higher-type information granules in the form of IT2 FSs. The
consequents of the IT2 FLS use TSK linear polynomials which are optimized via a
Cuckoo Search optimization algorithm.

The premise of the approach is that uncertainty can be interpreted as a case for
data dispersion in a sample of data. As shown in Fig. 3.4, where (a) shows a low
dispersion scenario where most data samples are very close together, therefore
having low dispersion, or in the case of the premise of this approach, low uncer-
tainty; or the case of (b), where although there is a concentration of data near the
center there are still data samples existing far from it, this can be interpreted as
medium uncertainty; or (c), where all data is equally spaced though the Universe of
Discourse, therefore an interpretation is given such that uncertainty is so high that
any place could potentially obtain another sample.

The conversion is done via the use of the Coefficient of Variation cv, shown in
Eq. (3.29). Where r is the standard deviation, and m is the mean of the set.

cv ¼ r
m

ð3:29Þ

Fig. 3.4 Visual depiction of varying degrees of data dispersion. a Low dispersion, b medium
dispersion, and c high dispersion
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A limitation exists on cv which adds a restriction that only non-negative values
can be computed.

The dispersion-uncertainty relation, when taking into account the use of IT2 FSs
when the FOU is used as a measure of uncertainty, a direct proportion relation is
used, as shown in Eq. (3.30). Such relation states that with low dispersion, a small
FOU exists, with a medium amount of dispersion, a medium amount of FOU exists,
and with a high amount of dispersion, a high amount of FOU exists.

cv / FOU ð3:30Þ

The dispersion-uncertainty relation can be visually perceived in Fig. 3.5, where
different degrees of dispersion are reflected by a proportionally sized FOU.

To form Higher-type information granules for the antecedents of the FLS, a FIS
prototype must first be acquired, conformed of a rule set composed of centers for
Gaussian membership functions and the accompanying subsets of data which
created each prototype. The proposed approach works on each FS independently
from each other, each FS is conformed of a center value m, and a standard deviation
r obtained from the subset of sample data d. And for each FS a cv is calculated
using Eq. (3.29). This value is now used to search for a near optimal FOU area in
an IT2 FS. The search starts by first considering the highest possible obtainable area
FOUmax ¼ R

~A xð Þdx ¼ 1 with the previously obtained r, as shown in Fig. 3.5.c,
achieved when r1 ¼ 0 and r2 ¼ 2r. Here, possible values of FOU are in the
interval [0, 1]. The search is then performed with discrete small steps k until the
FOU value which equals cv is found. The smallest value r0 is defined as
r1 ¼ r2 ¼ r0 ¼ r, as shown in Fig. 3.5a. Each step k affects r1 and r2 by a size
increment/decrement, as shown in Eq. (3.31). This is done iteratively while
r1; r2k k� 2r, where r1; r2k k is the Euclidean distance between r1 and r2, or until

cv ¼ FOUi, and FOUi is the current iteration of the IT2 FS modified by ri1;2.

ri1;2 ¼ ri�1
1;2 � k; i ¼ 0; 1; . . .; n ð3:31Þ

Fig. 3.5 Varying degrees of FOU in an IT2 FS. Where a FOU = 0.0 (low dispersion),
b FOU = 0.5 (medium dispersion), and c FOU = 1.0 (high dispersion)
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When the search has found the values of r1 and r2 which together form the
desired FOU, the IT2 FS can be formed, i.e. a Higher Type Information Granule has
been formed, as shown in Fig. 3.6.

As for obtaining the consequents of the FLS, a Cuckoo Search optimization
algorithm is used for this purpose. Where IT2 TSK linear polynomials embody the
consequents of the FLS.

3.2.4 Formation of GT2 Gaussian Membership Functions
Based on the Information Granule Numerical
Evidence

This work was done by Sanchez et al. [15], where a technique for the formation of
GT2 FS is proposed by means of inspiration on the principle of justifiable granu-
larity, whereby the concept of numerical evidence is used in the formation of
IT2 FS.

The proposed technique can be defined by the following steps:

1. Use any clustering algorithm to obtain an initial set of cluster centers (C) and
sets of data (D) which formed each information granule.

2. Calculate the required parameters to form a Gaussian primary membership
function. Extract an individual ci, from c 2 C, and using the subset di, from
d 2 D, obtain the standard deviation ri.

Fig. 3.6 IT2 FS represented by a Gaussian membership function with uncertainty in the standard
deviation. Formed with three variables: r1,r2 and m

3.2 Higher-Type Information Granule Formation 31



3. Initialize r for Gaussian secondary membership functions. Where the initial
value of r ¼ 0:1.

4. For each data point belonging to the subset di, create a secondary membership
function with revolution on fx uð Þ axis, following u of the primary membership
function.

Two approaches exist to how the value of r for the secondary membership
functions changes and how it affects the GT2 FS. The first approach maintains a
fixed value of r for all secondary membership functions. Appendix C.5 shows code
which creates this specific type of GT2 membership functions. Figures 3.7 and 3.8,
show a top view and orthogonal view of a sample GT2 FS with a constant r for the
secondary membership functions.

The other proposed approach to forming GT2 Gaussian membership functions is
to change r for the secondary membership functions based on u. Where the closest
points to the center will increase in size, since more data is expected which could
potentially fall there, whereas the sides have less possibilities of obtaining new data
points, therefore reducing the size. Appendix C.6 shows code which creates this
specific type of GT2 membership functions. Figures 3.9 and 3.10 depicts a sample
Gaussian primary membership function with r for the secondary membership
function dependent on u.

Fig. 3.7 Proposed GT2 Gaussian membership function with constant r for all secondary
membership functions. Top view
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Fig. 3.8 Proposed GT2 Gaussian membership function with constant r for all secondary
membership functions. Orthogonal view

Fig. 3.9 Proposed GT2 Gaussian membership function with r dependent on u for all secondary
membership functions. Orthogonal view
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In Appendix B.2, additional figures are shown for an application in solving the
Iris dataset. For both fixed, and r dependent on u.

References

1. Sanchez, M.A., Castillo, O., Castro, J.R., Rodríguez-Díaz, A.: Fuzzy granular gravitational
clustering algorithm. North Am. Fuzzy Inf. Process. Soc. 2012, 1–6 (2012)

2. Sanchez, M.A., Castillo, O., Castro, J.R., Melin, P.: Fuzzy granular gravitational clustering
algorithm for multivariate data. Inf. Sci. (Ny) 279, 498–511 (2014)

3. Buckley, J.J.: Sugeno type controllers are universal controllers. Fuzzy Sets Syst. 53(3), 299–
303 (1993)

4. Takagi, T., Sugeno, M., Fuzzy identification of systems and its applications to modeling and
control. IEEE Trans. Syst. Man. Cybern. SMC-15(1), 116–132 (1985)

5. Sugeno, M., Kang, G.: Structure identification of fuzzy model. Fuzzy Sets Syst. 28(1), 15–33
(1988)

6. Chiu, S.L.: Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 2,
267–278 (1994)

7. Sanchez, M.A., Castro, J.R., Perez-Ornelas, F., Castillo, O.: A hybrid method for IT2 TSK
formation based on the principle of justifiable granularity and PSO for spread optimization. In:
2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), pp. 1268–
1273 (2013)

8. Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. man
Cybern. 23(3), 665–685 (1993)

Fig. 3.10 Proposed GT2 Gaussian membership function with r dependent on u for all secondary
membership functions. Orthogonal view

34 3 Advances in Granular Computing



9. Jang, J.-S.R.: Fuzzy modeling using generalized neural networks and Kalman filter algorithm.
In: Proceedings of the ninth National conference on Artificial intelligence, pp. 762–767 (1991)

10. Kennedy, J., Eberhart, R.: Particle swarm optimization. In Proceedings of ICNN’95—
International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

11. Sanchez, M.A., Castillo, O., Castro, J.R.: Information granule formation via the concept of
uncertainty-based information with Interval Type-2 Fuzzy Sets representation and Takagi–
Sugeno–Kang consequents optimized with Cuckoo search. Appl. Soft Comput. 27, 602–609
(2015)

12. Yang, X.-S.: Cuckoo search via Lévy flights. In: 2009 World Congress on Nature &
Biologically Inspired Computing (NaBIC), pp. 210–214 (2009)

13. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput.
Geosci. 10(2), 191–203 (1984)

14. Sanchez, M.A., Castillo, O., Castro, J.R.: Method for measurement of uncertainty applied to
the formation of interval type-2 fuzzy sets. In: Melin, P., Castillo, O., Kacprzyk, J. (eds.)
Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired
Optimization, vol. 601, pp. 13–25. Springer International Publishing, Cham (2015)

15. Sanchez, M.A., Castro, J.R., Castillo, O.: Formation of general type-2 Gaussian membership
functions based on the information granule numerical evidence. In: 2013 IEEE Workshop on
Hybrid Intelligent Models and Applications (HIMA), pp. 1–6 (2013)

References 35



Chapter 4
Experimentation and Results Discussion

All experimentation is focused on the previously shown approaches to fuzzy
information granulation. Most experiments were done with benchmark datasets
which will be described in the following paragraph. Two benchmark dataset types
were used: classification, and identification.

Classification type benchmarks datasets are described in Table 4.1, showing
name, number of features, number of classes, and sample size. Where these datasets
are iris, wine, glass identification, seeds, image segmentation, Haberman’s survival,
and mammographic mass [1]. The iris dataset, has 4 input features (petal length,
petal width, sepal length, and sepal width), and 3 outputs (iris setosa, iris virginica,
and iris versicolor) with 50 samples of each flower type, with a total of 150
elements in the dataset. The wine dataset, with 13 input features of different con-
stituents (Alcohol, malic acid, ash, alkalinity of ash, magnesium, total phenols,
flavanoids, nonflavanoid phenols, proanthocyanidins, color intensity, hue,
OD280/OD315 of diluted wines, and proline) identifying 3 distinct italian locations
where the wine came from. With 59, 71, and 48 elements respectively in each class,
for a total of 178 elements in the whole dataset. The glass identification dataset, has
9 input variables (refractive index, sodium, magnesium, aluminum, silicon, potas-
sium, calcium, barium, and iron), and 7 classes (building windows float processed,
building windows non float processed, vehicle windows float processed, containers,
tableware, and headlamps). With 70, 76, 17, 13, 9, and 29 elements respectively in
each class, for a total of 214 elements in the whole dataset. The seeds dataset, with 7
input features (area, perimeter, compactness, length of kernel, width of kernel,
asymmetry coefficient, and length of kernel groove) and 3 output classes (Kama,
Rosa, and Canadian) with 70 samples of each class, for a total of 210 elements in
the dataset. The image segmentation dataset, with 19 input features (column of the
center pixel region, row of the center pixel region, number of pixels in a region,
result of line extraction algorithm, lines of high contrast, mean contrast of hori-
zontally adjacent pixels in the region, standard deviation contrast of horizontally
adjacent pixels in the region, mean contrast of vertically adjacent pixels in the
region, standard deviation contrast of vertically adjacent pixels in the region,

© The Author(s) 2017
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average of region, average over region of R, average over region of B, average over
region of G, measure of excess red, measure of excess blue, measure of excess
green, transformation of RGB, saturation mean, and hue mean), and 7 classes
(brickface, sky, foliage, cement, window, path, and grass) with 330 samples of each
class, for a total of 2310 samples in the whole dataset. The Haberman’s survival
dataset, has 3 input features (age of patient at time of operation, year of operation,
and number of positive axillary nodes detected), and 2 output classes (patient
survived 5 years or longer, and patient died within 5 years) with 225 and 81
samples respectively for each class, for a total of 306 samples in the dataset. And,
the mammographic mass dataset, with 5 input features (BI-RADS assessment, age,
shape, margin, and density) and 2 output classes (benign, and malignant) with 427
benign samples and 403 malignant samples, totaling 830 samples in the dataset.

Identification type benchmarks datasets are described in Table 4.2, showing
name, number of features, and sample size. Where these datasets are complex curve
[2], engine behavior [1], thermex behavior [2], bodyfat [3], and housing [1]. Where
these datasets are a complex curve, with 1 input (x) and 1 output (y), and 94 total
samples. Engine behavior dataset, with 2 inputs (fuel rate, speed) and 2 outputs
(torque, nitrous oxide emissions), and 1199 total samples. Thermex behavior
dataset, with 1 input (temperature) and 1 output (thermex), with 236 total samples.
The bodyfat dataset, with 13 input (age, weight, height, neck circumference, chest
circumference, abdomen 2 circumference, hip circumference, thigh circumference,
knee circumference, ankle circumference, biceps (extended) circumference, forearm
circumference, and wrist circumference) features and 1 output (bodyfat percentage),
with 252 elements in total. The housing dataset with 13 inputs (per capita crime rate
per town, proportion of residential land zoned lots over 25,000 sq. ft., proportion of

Table 4.1 Description of classification benchmark datasets used for experimentation

Dataset No. of features No. of classes Sample size

Iris 4 3 150

Wine 13 3 178

Glass 9 6 214

Seed 7 3 210

Image segmentation 19 7 2310

Haberman’s survival 3 2 306

Mammographic mass 5 2 830

Table 4.2 Description of identification benchmark datasets used for experimentation

Dataset No. of inputs No. of outputs Sample size

Complex curve 1 1 94

Engine behavior 2 2 1199

Thermex behavior 1 1 236

Bodyfat 13 1 252

Housing 13 1 506
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non-retail business acres per town, 1 if tract bounds Charles river, 0 otherwise,
nitric oxides concentration, average number of rooms per dwelling, Proportion of
owner-occupied units built prior to 1940, weighted distances to five Boston
employment centers, index of accessibility to radial highways, Full-value
property-tax rate per $10,000, pupil-teacher ratio by town, 1000(Bk − 0.63)2,
where Bk is the proportion of blacks by town, and percent lower status of the
population) and 1 output (median value of owner occupied homes in each neigh-
borhood), with 506 samples in total.

4.1 Granulation Algorithms

The first set of shown experiments will be for the work done in Sect. 3.1, as this is a
clustering algorithm the classification accuracy is measured via a confusion matrix
[4]. In Table 4.3, the accuracy of the classification performance is measured, where
letters in bold show the best achieved performance, and “–” signifies no published
results exists. Here, result comparison was made with SC3SR [5], ASC1 [6], LODE
[7], ASC2 [8], CE-RCTO [9], BH [10], MPC-KMeans [11], SCC [12],

Table 4.3 Classification accuracy percentage of various algorithms with multiple datasets

Algorithm Dataset

Iris Wine Glass Seeds Image
segmentation

Haberman’s
survival

Mammographic
mass

FGGCA 97.22 96.66 93.645 95.572 90.586 76.195 82.72

SC3SR 97.1 – 66.4 – – – –

ASC1 91.8 70 – – 74.2 – –

LODE 96 – – – – 77.3 –

ASC2 95.7 – – – – – –

CE-RCTO 89.5 – 73.15 – 93.63 – –

BH 89.98 – – – – – –

MPC-KMeans – 82.2 – – – – –

SCC – 97.1 64.9 – – – –

Spectral CAT 97 97 70 – 65 – –

LDA-KM – 83 51 – – – –

Boost-NN – – – 75.6 – – –

DGP – – – – – – 86

AMA – 96 87 – – 65 –

Bac0+Bac1 – – – – – 70.59 –

CGCA – – – 92 – – –

FLD – – 64.79 – 93.43 – –

IP-DCA-VNS 96.7 93.2 80.4 – – – –

TPMSVM
+GA

– – – – – 72.89 –

DJS 91.3 71.9 43.9 – 57.6 – –
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Spectral CAT [13], LDA-KM [14], Boost-NN [15], DGP [16], AMA [17], Bac0
+Bac1 [18], CGCA [19], FLD [20], IP-DCA-VNS [21], TPMSVM+GA [22],
TPMSVM+GA [22], and DJS [23].

These results show that the performance of the proposed FGGCA is very good
when contrasted against the other shown clustering algorithms. Although the
FGGCA obtained better results in 4 cases out of 7. Yet in the other 3 cases, a similar
result was achieved. And generally speaking, where the other clustering algorithms
sometimes achieve high performance, they sometimes also achieve a very low
performance, whereas FGGCA is much more stable in achieving a high perfor-
mance throughout all tests.

4.2 Higher-Type Information Granule Algorithms

These sets of experiments are for the proposed approach shown in Sect. 3.2.1. For
this case, performance is measured by the output coverage. As Higher-type infor-
mation granules are more robust against information uncertainty, three types of
noise was inserted into a complex curve dataset: no noise, 10 and 0 dBi. Where dBi
is a measure of power of noise. In Figs. 4.1, 4.2 and 4.3, three instances of the FOU
coverage is shown: the first, when no noise is inserted into the dataset, a thin FOU is
present, as there is no variation, yet the general behavior of the complex curve is
easily followed by the IT2 FIS which was created by the proposed method; the
second, with 10 dBi noise inserted into the dataset, it is clearly visible that although
there is noise the FOU has a very good coverage and still follows the center of the
noise behavior fairly well; the third, although there is significant noise at 0 dBi, yet
the FOU still manages to mostly cover all output points, and still achieving to

Fig. 4.1 The final result of the formed IT2 FIS alongside the FOU, when there is no added noise
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follow the general behavior of the curve. Additional results are shown in
Appendix B.3.

More experiments were executed upon this approach to Higher-type information
granulation, from Sect. 3.2.2, now using classification datasets, such as Iris, Wine,
and Glass. Results are shown Table 4.4, where the classification accuracy for Iris,
Wine and Glass datasets depicting the minimum, mean, maximum, and standard
deviation after 30 execution runs. As well as the RMSE for the previously shown
complex curve dataset. These results show a general good performance throughout
tested benchmark datasets.

Fig. 4.2 The final result of the formed IT2 FIS alongside the FOU, when there is 10 dBi noise

Fig. 4.3 The final result of the formed IT2 FIS alongside the FOU, when there is 0 dBi noise
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The next set of experiments pertains to the approach shown in Sect. 3.2.3, where
the output coverage is used as a performance measure. Two experiments will be
shown, for a complex curve and thermex behavior. In this case, Hold-out type test
was done, where 40 % of the dataset was used for training and the other 60 % for
testing, all chosen randomly. Figures 4.4 and 4.5 show the formed IT2 FISs for
both cases, complex curve and thermex behavior. Here, the main point of interest is
the fact that the antecedent FSs have different sized FOUs, meaning that each IT2
FS’s FOU is adjusted to best fit the data it is representing.

The coverage for these two experiments can be perceived by Figs. 4.6 and 4.7,
for the complex curve, and thermex behavior, respectively. Where the use of linear
IT2 polynomials cause the observed behavior where the output FOU has difficulty
in adapting to gradient changes. Yet the FOU still manages to cover 100 % of the
behavior of both curves. In Appendix B.4, an additional experiment is shown.

These two experiments are more focused on showing the performance of the
formed antecedents, which are IT2 FSs, rather than the adjusted IT2 linear TSK

Table 4.4 Obtained results
for various benchmark
datasets

Classification accuracy % RMSE

Iris Wine Glass Complex curve

Min 86.66 88.88 44.18 0.36

Mean 93.99 93.05 68.43 0.69

Max 100 97.22 86.04 1

Std 5.164 5.982 15.592 0.181

Fig. 4.4 IT2 FIS for solving the complex curve dataset
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consequents. Where an important point is the heterogeneously sized FOUs of each
antecedents FS, each adapted to the available data which formed them. And con-
sidering such adaptations in FOU size, the end result is acceptable, such that 100 %
coverage was achieved by the output FOU.

Fig. 4.5 IT2 FIS for solving the thermex behavior dataset

Fig. 4.6 Output coverage for the complex curve dataset
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4.3 Application. General Type-2 Fuzzy Controller

An application of information granulation implementing FSs was made to
demonstrate the differences between noise resilience of T1 FSs, IT2 FSs and GT2
FSs in a mobile robot controller. This experiment was presented by [24]. As
Higher-type information granules (IT2 FSs and GT2 FSs) intrinsically handle
uncertainty within their model, it is expected that both would perform better when
external perturbations are added, and that T1 FSs would not be able to properly
handle such external perturbations as well as its counterparts.

The models used for this experiment is that of a unicycle mobile robot [25]
which has two driving wheels located on the same rear axis, and a front free moving
wheel. Figure 4.8 shows a graphical description of the robot model used.

The dynamics of the mobile robot model assumes that the free moving wheel can
be ignored, such that Eqs. (4.1) and (4.2) model the plant used in the simulation.
Where, q ¼ x; y; hð ÞT is the vector of the configuration coordinates, t ¼ v;wð ÞT is
the vector of velocities, s ¼ s1; s2ð Þ is the vector of torques applied to the wheels of
the robot where s1 and s2 denote the torques of the right and left wheel, x; yð Þ is the
position in the X–Y (world) reference frame, h is the angle between the heading
direction and the x-axis, v and w are the linear and angular velocities.

Fig. 4.7 Output coverage for the thermex behavior dataset
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M qð Þ _vþC q; _qð ÞvþDv ¼ sþP tð Þ ð4:1Þ

_q ¼
cos h 0
sin h 0
0 1

2
4

3
5

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
J qð Þ

v
w

� �
|ffl{zffl}

t

ð4:2Þ

A non-holonomic constraint exists in this system, corresponding to a no-slip
wheel condition preventing the robot from moving sideways, as shown in Eq. (4.3).

_y cos h� _x sin h ¼ 0 ð4:3Þ

The Fuzzy Controller (FC) was modeled after [26]. Where linear #dð Þ and
angular wdð Þ velocity errors were used for input variables, and right s1ð Þ and left
s2ð Þ torques for outputs. Chosen membership functions used for this FC are
Trapezoidal MFs for Negative (N) and Positive (N) linguistic terms, and Triangular
MFs for Zero (Z) linguistic term. The rule base can be seen in Table 4.5.

Fig. 4.8 Mobile robot model
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Finally, Fig. 4.9 shows the complete system used for simulation the robot
controller.

Results for the simulation were performed using various external perturbations:
band-limited white noise, pulse generated noise, and uniform random number
noise. Configuration for the different types of external perturbation are as follows:
for band-limited white noise, the height of the Power Spectral Density was equal to
0.1; for pulse generated noise, the amplitude was 1, the period was set to 1, the
pulse width (%) was set to 1, and the phase delay was set to 0; and for the uniform
random number noise, the limits where set to [−1, 1].

The test criterions chosen to compare the performance of T1, IT2 and GT2 FSs
are ISE, IAE, ITSE, and ITAE, shown in Eqs. (4.4)–(4.7) respectively.

ISE ¼
Z1
0

e2 tð Þdt ð4:4Þ

Table 4.5 Rule base used by
the FC

ev (Input 1) ew (Input 2) Output 1 Output 2

N N N N

N Z N Z

N P N P

Z N Z N

Z Z Z Z

Z P Z P

P N P N

P Z P Z

P P P P

Fig. 4.9 Complete FC of the mobile robot

46 4 Experimentation and Results Discussion



IAE ¼
Z1
0

e tð Þj jdt ð4:5Þ

ITSE ¼
Z1
0

e2 tð Þtdt ð4:6Þ

ITAE ¼
Z1
0

e tð Þj jtdt ð4:7Þ

All simulation results are concentrated in Tables 4.6, 4.7 and 4.8, where the
three different types of external perturbations are inserted into the system.
Additional behavioral results are shown in Appendix B.5.

Table 4.6 Performance index results when band-limited white noise is inserted into the system as
an external perturbation

Performance index v w

T1FC IT2FC GT2FC T1FC IT2FC GT2FC

ITAE 135.20 120.30 116.80 137.10 119.50 114.10

ITSE 143.70 110.10 103.70 153.20 110.90 101.40

IAE 13.71 12.18 11.80 13.96 12.20 11.70

ISE 14.97 11.33 10.61 15.98 11.60 10.63

Table 4.7 Performance index results when pulse generated noise is inserted into the system as an
external perturbation

Performance index v w

T1FC IT2FC GT2FC T1FC IT2FC GT2FC

ITAE 27.37 26.37 24.22 18.05 15.67 13.20

ITSE 9.44 7.07 5.27 7.14 3.70 2.26

IAE 2.90 2.95 2.74 2.17 2.15 1.90

ISE 1.12 1.11 0.91 0.99 0.94 0.79

Table 4.8 Performance index results when uniform random number noise is inserted into the
system as an external perturbation

Performance index v w

T1FC IT2FC GT2FC T1FC IT2FC GT2FC

ITAE 80.09 64.65 59.39 81.90 65.16 59.85

ITSE 51.69 33.00 28.44 51.40 31.42 26.74

IAE 8.52 7.10 6.56 8.67 7.17 6.67

ISE 5.80 4.22 3.69 5.83 4.10 3.63
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In all accounts, the logical expected results is reached, where the GT2 FC has the
best performance, followed by the IT2 FC, and finally the lowest performing FC is
the T1 FC. These results are expected due to how uncertainty is not integrated into
the model of the T1 FC, whereas the IT2 FC has some degree of uncertainty
representation, and the GT2 FC has even more handle on uncertainty.
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Chapter 5
Conclusions

Multiple approaches were suggested for the formation of Higher-type information
granules with Type-2 Fuzzy Set representation. Among these approaches, one
implementation made direct use of the principle of justifiable granularity in order
calculate the individual coverage for all information granules, obtaining very good
performance, and another approach suggested a method for using the concept of the
principle of justifiable granularity in order to create GT2 FSs. Other approaches
were also proposed which measured and captured uncertainty for the formation of
Higher-type information granules, one such approach used information theory to
overlap two sample information granules in order to directly obtain the uncertainty
between both granules, the other approach used calculated the amount of data
dispersion and used it as a means to provide a FOU to IT2 FSs.

In general, many approaches were tried in this book which form Higher-type
information granules, all varying in their performance, but having similar results in
general terms. Showing that there are many possible approaches for creating
Higher-type information granules.

A clustering algorithm with granular computing concepts was created which
used gravitational forces as the premise for finding relations between all data. With
the premise that similar information must belong to the same information granules,
gravitational forces were used to group together closely related data and find such
relevant information granules. When experimentation was performed, the results
were very promising as obtained performance was very comparable with recent
state of the art clustering algorithm, showing that the concept of granular com-
puting, when applied, does obtain great performance.

An algorithm was created which used the principle of justifiable granularity in
order to calculate the best possible information granule size based on the evidence
which initially formed such granules. When experiments were performed, results
showed good performance, once again showing that the integration of granular
computing concepts can give benefits to existing algorithms.

Multiple approaches were tested where Higher-type information granules were
created. Due to the nature of uncertainty, these approaches used concepts from
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information theory and statistics in order to measure uncertainty, either directly or
indirectly, and use these uncertainty measures in the formation of Higher-type
information granules, where they were represented by Type-2 FSs.

Considering FSs were used as representation for information granules, FLSs had
to be used in order to process the granular models. Existing two types of FLS types,
Mamdani and TSK, ultimately, TSK was chosen as they typically perform better
when modeling from data. Yet they had to be optimized from the data itself in order
perform well. Cuckoo Search optimization algorithm was chosen for all these
optimizations as it is simple to use and yet it obtains very acceptable results,
although any other optimization algorithm could be used, such that there is no
marriage between the proposed approaches and the Cuckoo Search optimization
algorithm. When dealing with the optimization of IT2 FLSs, the output of these
systems is an interval which should provide enough coverage for all output refer-
ence data, such that the objective function had to be multi objective, where he
coverage was to be assured and at the same time the coverage was not to overextend
as to over-generalize the output.
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Appendix B

Appendix B.1

See Figs. B.1.1, B.1.2, B.1.3 and B.1.4.

Figure B.1.1 Synthetic cloud of data with point concentration bias towards the left side, used to
demonstrate the found representative center as well as the length of the σ for the Gaussian
membership functions
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Figure B.1.2 Synthetic patterned dataset which shows the behavior of the clustering section of
the FGGCA of how it distributes the representative clusters between the whole dataset

Figure B.1.3 Synthetic dataset with a cross pattern, where the solid discs show the location of
5 cluster centers
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Appendix B.2

The following figures (Figs. B.2.1, B.2.2, B.2.3 and B.2.4) are from the iris dataset
as seen from the primary function, where the functions can be seen as incomplete,
yet they were built from existing numerical evidence, where there is no data, there
was no evidence in the set for that specific membership function.

The following figures (Figs. B.2.5, B.2.6, B.2.7 and B.2.8) are the same
membership function from the iris dataset, but as seen from an orthogonal point of
view to better appreciate the formed General Type-2 Gaussian membership
functions.

The respective membership functions for the iris dataset formed with a depen-
dency on u will be shown in the following figures (Figs. B.2.9, B.2.10, B.2.11 and
B.2.12) from the primary membership function’s point of view.

The following figures (Figs. B.2.13, B.2.14, B.2.15 and B.2.16) show the same
membership functions from the iris dataset, dependent on u, but from an orthogonal
point of view.

Figure B.1.4 Synthetic dataset with a cross pattern, where the solid discs show the location of
9 cluster centers
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Figure B.2.1 General Type-2 Gaussian membership function built from the iris dataset as seen
from the primary function’s point of view. Shown here is the sepal length

Figure B.2.2 General Type-2 Gaussian membership function built from the iris dataset as seen
from the primary function’s point of view. Shown here is the sepal width
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Figure B.2.3 General Type-2 Gaussian membership function built from the iris dataset as seen
from the primary function’s point of view. Shown here is the petal length

Figure B.2.4 General Type-2 Gaussian membership function built from the iris dataset as seen
from the primary function’s point of view. Shown here is the petal width
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Figure B.2.5 General Type-2 Gaussian membership function built from the iris dataset as seen
from an orthogonal point of view. Shown here is the sepal length

Figure B.2.6 General Type-2 Gaussian membership function built from the iris dataset as seen
from an orthogonal point of view. Shown here is the sepal width
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Figure B.2.7 General Type-2 Gaussian membership function built from the iris dataset as seen
from an orthogonal point of view. Shown here is the petal length

Figure B.2.8 General Type-2 Gaussian membership function built from the iris dataset as seen
from an orthogonal point of view. Shown here is the petal width
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Figure B.2.9 General Type-2 Gaussian membership function built from the iris dataset as seen
from the primary function’s point of view. Shown here is the sepal length

Figure B.2.10 General Type-2 Gaussian membership function built from the iris dataset as seen
from the primary function’s point of view. Shown here is the sepal width
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Figure B.2.11 General Type-2 Gaussian membership function built from the iris dataset as seen
from the primary function’s point of view. Shown here is the petal length

Figure B.2.12 General Type-2 Gaussian membership function built from the iris dataset as seen
from the primary function’s point of view. Shown here is the petal width
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Figure B.2.13 General Type-2 Gaussian membership function built from the iris dataset as seen
from the primary function’s point of view. Shown here is the sepal length

Figure B.2.14 General Type-2 Gaussian membership function built from the iris dataset as seen
from the primary function’s point of view. Shown here is the sepal width
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Figure B.2.15 General Type-2 Gaussian membership function built from the iris dataset as seen
from the primary function’s point of view. Shown here is the petal length

Figure B.2.16 General Type-2 Gaussian membership function built from the iris dataset as seen
from the primary function’s point of view. Shown here is the petal width
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Appendix B.3

The following figures (Figs. B.3.1, B.3.2 and B.3.3) show the behavior of the
proposed approach when dealing with different degrees of noise, in this case, the
benchmark Iris dataset was used.

Figure B.3.2 The final result of the formed IT2 FIS alongside the FOU, when there is 30 dBi
noise

Figure B.3.1 The final result of the formed IT2 FIS alongside the FOU, when there is no noise
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Appendix B.4

Figure B.4.1 shows the rule set for an IT2 FLS as formed for the benchmark Engine
dataset, and the following figures (Figs. B.4.2 and B.4.3) are the output behavior of
the output coverage.

Figure B.3.3 The final result of the formed IT2 FIS alongside the FOU, when there is 20 dBi
noise

Figure B.4.1 IT2 FIS for solving the engine behavior dataset
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Figure B.4.2 Output coverage for the engine dataset. For the first output of the FLS

Figure B.4.3 Output coverage for the engine dataset. For the second output of the FLS
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Appendix B.5

As an example of the relation between noise and FC performance, the following
figure (Fig. B.5.1) shows the obtained Performance Index values for each FC
(T1, IT2, and GT2) when inserting band-limited white noise into the system. Here,
the performance of the GT2FC is better with respect to both IT2FC and T1FC.

To illustrate the behavior of the FC with respect to the reference, in a noisy
environment, the outputs v and w are shown in the following figures (Figs. B.5.2,

Figure B.5.1 Behavior of various performance indices in relation to the amount of noise per-
turbations present in the system, when T1FC, IT2FC, and GT2FC are used. a ITAE, b ITSE,
c IAE, and d ISE. Band-limited white noise is used as external perturbation
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Figure B.5.2 Reference/FC results, for v and w, using a T1FC where the perturbations are added
by band-limited white noise

Figure B.5.3 Reference/FC results, for v and w, using an IT2FC where the perturbations are
added by band-limited white noise
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B.5.3 and B.5.4), for T1FC, IT2FC, and GT2FC, respectively. Where the selected
perturbation is band-limited white noise, and a 20 second space was used to obtain
the samples.

Figure B.5.4 Reference/FC results, for v and w, using a GT2FC where the perturbations are
added by band-limited white noise
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Appendix C

function [aopt,bopt,x] = intervalinfogranule(x,alphaA,alphaB,mu) 

    sigma = std(x); 

    [x,~] = sort(x); 

    xmin = min(x); xmax = max(x); 

    % upper bound of the information granule 

    b = linspace(mu,xmax,1000); 

    f  = exp(-alphaB*abs(b-mu)); 

    zb = (sqrt(2)/2)*(b-mu)/sigma; 

    Ipxb = erf(zb)/2; 

    Vb = f.*Ipxb; 

    [~,idx] = max(Vb); 

    bopt = abs(b(idx)-mu); 

    % lower bound of the information granule 

    a = linspace(xmin,mu,1000); 

    f  = exp(-alphaA*abs(a-mu)); 

    za = (sqrt(2)/2)*(a-mu)/sigma; 

    Ipxa = -erf(za)/2; 

    Va = f.*Ipxa; 

    [~,idx] = max(Va); 

    aopt = abs(a(idx)-mu); 

Appendix C.1
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Appendix C.2

function [centers,sigmas] = FGGA(inputs,outputs,radius,modifier) 

%% Normalize data 

x = inputs; 

x = [x,outputs]; 

maxX = max(max(x)); 

x = x./maxX;  

%% Initial values 

SIZE = size(x(:,1),1); 

numVars = size(x,2); 

mass = 100; 

G = 6.67e-11; 

m = ones(1,SIZE).*mass; 

y = x; 

x = [x, zeros(size(x(:,1),1),2)]; 

INTERACTIONS_EXIST = 1; 

iters = 0; 

%% Main loop 

while INTERACTIONS_EXIST == 1 

   INTERACTIONS_EXIST = 0; 

   iters = iters + 1; 

   % Calculate all interacting forces in the system 

   F = zeros(SIZE,SIZE); 

   dist = zeros(SIZE,SIZE); 

   for i=1:1:SIZE 

      for j=1:1:SIZE 

         if i ~= j 

             dSum = 0; 

             for k=1:numVars 

                 dSum = dSum + (x(i,k)-x(j,k))^2; 

             end 
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             dist(i,j) = sqrt(dSum); 

             F(i,j) = (G*m(i)*m(j)) / dSum; 

         else 

             dist(i,j) = 3; 

         end

      end 

   end 

   % Reorder particule data  

   [~,idx] = sort(sum(F),'descend'); 

   % Unite particles 

   for i=1:1:SIZE 

       idxi = idx(i); 

       [minD,md]=min(dist(idxi,:)); 

       op1 = idxi; 

       op2 = md; 

       if m(op1)~=-1 && m(op2)~=-1 && op1~=op2 && minD<radius 

           INTERACTIONS_EXIST = 1; 

           if m(op1) >= m(op2) 

              a = op1; 

              b = op2; 

           else 

              a = op2; 

              b = op1; 

           end 

           m(a) = m(a) + m(b); 

           % % Move paticles according to masses % % 

           for k=1:numVars 
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              dSum = dSum + (x(a,k)-x(b,k))^2; 

           end 

           d = sqrt(dSum); 

           distp = (m(b)/(m(a)+m(b)))*d; 

           t = (1/d)*distp; 

           x(a,:) = x(a,:) + t*(x(b,:)-x(a,:)); 

           % % % % % % % % % % % % % % % % % % % % % 

           m(b) = -1; 

           x(b,:) = -2; 

           SIZE = SIZE - 1; 

       end 

   end 

   % Clean up elements from 'm' and 'x' 

   m(m==-1) = []; 

   condition=x(:,1)==-2;x(condition,:)=[]; 

   radius = radius * modifier; 

end

%% Calculate radius of influence per cluster point found 

lvalue = zeros(size(y,1),SIZE); 

for i=1:size(y) 

    F    = zeros(SIZE,1); 

    dist = zeros(SIZE,1); 

    for j=1:SIZE 

        if ~isequal(x(j,1:numVars),y(i,1:numVars)) 

            dSum = 0; 

            for n=1:numVars 

                dSum = dSum + (x(j,n)-y(i,n))^2; 

76 Appendix C



            end 

            dist(j) = sqrt(dSum); 

            F(j) = (G*m(j)*100)/dSum; 

        end 

    end 

    [~,idx] = max(F); 

    lvalue(i,idx) = dist(idx); 

end

for i=1:SIZE 

    temp = lvalue(:,i); 

    temp(temp==0) = []; 

    x(i,numVars+1) = mean(temp); 

end

%% Format output data and Denormalize 

rowToDel = []; 

centers = x(:,1:size(inputs,2)).*maxX; 

sigmas  = x(:,numVars+1).*(maxX); 

for i=1:size(sigmas,1) 

    if sigmas(i) == 0 || isnan(sigmas(i)) 

        rowToDel = [rowToDel;i]; 

    end 

end

sigmas(rowToDel,:)  = []; 

centers(rowToDel,:) = []; 

sigmas = repmat(sigmas,1,size(inputs,2)); 
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Appendix C.3

    y = Xin; 

    y = [y,Xout];  

    SIZE = size(centers,1); 

    alpha = 0; % generalized information granules 

    lSigmas = zeros(SIZE,size(centers,2)); 

    rSigmas = zeros(SIZE,size(centers,2)); 

    sigmas  = zeros(SIZE,size(centers,2)); 

    % Loop variables 

    for k=1:size(centers,2) 

        lvalue = zeros(size(y,1),SIZE); 

        % Loop data points 

        for i=1:size(y,1) 

            dist = zeros(SIZE,1); 

            % Loop cluster centers 

            for j=1:SIZE 

                if ~isequal(centers(j,:),y(i,:)) 

                    d = (centers(j,k)-y(i,k))^2; 

                    dist(j) = sqrt(d); 

                end 

            end 

            [~,idx] = min(dist); 

            lvalue(i,idx) = y(i,k); 

        end 

        % Calculate sigmas for inputs and outputs 

        for i=1:SIZE 

            temp = lvalue(:,i); 

            temp(temp==0) = []; 

function fismat = it2fuzzyfy(Xin,Xout,centers) 
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            % If no elements in set, insert a minimal value 

            if isempty(temp) 

                tempVar = abs(max(y)-min(y)); 

                lSigmas(i,k) = (tempVar(k)/100); 

                rSigmas(i,k) = (tempVar(k)/100); 

                sigmas(i,k)  = (tempVar(k)/100); 

            % If elements in set exists, calculate lengths A and B 

            else 

                temp = sort(temp,'ascend'); 

                sigmas(i,k) = sqrt((1/(size(temp,1)))*sum((temp-centers(i,k)).^2)); 

                if ~isnan(temp) 

                    [lTemp,rTemp] = intervalinfogranule(temp,alpha,alpha,centers(i,k)); 

                    if lTemp==0 || rTemp==0 

                        tempVar = max(y)-min(y); 

                        lSigmas(i,k) = (tempVar(k)/100); 

                        rSigmas(i,k) = (tempVar(k)/100); 

                    elseif lTemp <= rTemp 

                        lSigmas(i,k) = (lTemp/3); 

                        rSigmas(i,k) = (rTemp/3); 

                    else 

                        lSigmas(i,k) = (rTemp/3); 

                        rSigmas(i,k) = (lTemp/3); 

                    end 

                end 

            end 

        end 

    end 
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    sigmas(~sigmas) = 0.01; 

     centersAnt = centers(:,1:size(Xin,2)); 

    lSigmasAnt = lSigmas(:,1:size(Xin,2)); 

    rSigmasAnt = rSigmas(:,1:size(Xin,2)); 

    mSigma = abs(rSigmasAnt - lSigmasAnt); 

    xBounds = []; 

    [numData,numInp]   = size(Xin); 

    [~,numOutp] = size(Xout); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 

    % Distance multipliers 

    distMultp = (1.0 / sqrt(2.0)) ./ sigmas; 

    [numRule,~] = size(centersAnt); 

    sumMu = zeros(numData,1); 

    muVals = zeros(numData,1); 

    dxMatrix = zeros(numData,numInp); 

    muMatrix = zeros(numData,numRule * (numInp + 1)); 

    for i=1:numRule 

        for j=1:numInp 

            dxMatrix(:,j) = (Xin(:,j) - (centersAnt(i,j)-mSigma(i,j))) * distMultp(i,j); 

        end 

        dxMatrix = dxMatrix .* dxMatrix; 

        if numInp > 1 

            muVals(:) = exp(-1 * sum(dxMatrix')); 

        else 

            muVals(:) = exp(-1 * dxMatrix'); 

        end 
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        sumMu = sumMu + muVals; 

        colNum = (i - 1)*(numInp + 1); 

        for j=1:numInp 

            muMatrix(:,colNum + j) = Xin(:,j) .* muVals; 

        end 

        muMatrix(:,colNum + numInp + 1) = muVals; 

    end % endfor i=1:numRule 

    sumMuInv = 1.0 ./ sumMu; 

    for j=1:(numRule * (numInp + 1)) 

        muMatrix(:,j) = muMatrix(:,j) .* sumMuInv; 

    end 

    % Compute the TSK equation parameters 

    lOutEqns = muMatrix \ Xout; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 

    % Distance multipliers 

    distMultp = (1.0 / sqrt(2.0)) ./ sigmas; 

    sumMu = zeros(numData,1); 

    muVals = zeros(numData,1); 

    dxMatrix = zeros(numData,numInp); 

    muMatrix = zeros(numData,numRule * (numInp + 1)); 

    for i=1:numRule 

        for j=1:numInp 

            dxMatrix(:,j) = (Xin(:,j) - (centersAnt(i,j)+mSigma(i,j))) * distMultp(i,j); 

        end 

        dxMatrix = dxMatrix .* dxMatrix; 

        if numInp > 1 
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            muVals(:) = exp(-1 * sum(dxMatrix')); 

        else 

            muVals(:) = exp(-1 * dxMatrix'); 

        end 

        sumMu = sumMu + muVals; 

        colNum = (i - 1)*(numInp + 1); 

        for j=1:numInp 

            muMatrix(:,colNum + j) = Xin(:,j) .* muVals; 

        end 

        muMatrix(:,colNum + numInp + 1) = muVals; 

    end % endfor i=1:numRule 

    sumMuInv = 1.0 ./ sumMu; 

    for j=1:(numRule * (numInp + 1)) 

        muMatrix(:,j) = muMatrix(:,j) .* sumMuInv; 

    end 

    % Compute the TSK equation parameters 

    rOutEqns = muMatrix \ Xout; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 

    % the clusters input dimensions 

    [numRule,~] = size(centersAnt); 

    % Set the FIS name as 'sug[numInp][numOutp]' 

    theStr = sprintf('sug%g%g',numInp,numOutp); 

    fismat.name=theStr; 

    % FIS type 

    fismat.type = 'sugeno'; 

    fismat.andMethod    = 'prod'; 
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    fismat.orMethod     = 'probor'; 

    fismat.impMethod    = 'prod'; 

    fismat.aggMethod    = 'max'; 

    fismat.defuzzMethod = 'cos'; 

    % Set the input variable labels 

    for i=1:numInp 

        theStr = sprintf('in%g',i); 

        fismat.input(i).name = theStr; 

    end 

    % Set the output variable labels 

    for i=1:numOutp 

        theStr = sprintf('out%g',i); 

        fismat.output(i).name = theStr; 

    end 

    % Set the input variable ranges 

    if isempty(xBounds) 

        % No data scaling range values were specified, use the actual minimum and 

        % maximum values of the data. 

        minX = min(Xin); 

        maxX = max(Xin); 

    else 

        minX = xBounds(1,1:numInp); 

        maxX = xBounds(2,1:numInp); 

    end 

    ranges = [minX ; maxX]'; 

    for i=1:numInp 

       fismat.input(i).range = ranges(i,:); 
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    end 

    % Set the output variable ranges 

    if isempty(xBounds) 

        % No data scaling range values were specified, use the actual minimum and 

        % maximum values of the data. 

        minX = min(Xout); 

        maxX = max(Xout); 

    else 

        minX = xBounds(1,numInp+1:numInp+numOutp); 

        maxX = xBounds(2,numInp+1:numInp+numOutp); 

    end 

    ranges = [minX ; maxX]'; 

    for i=1:numOutp 

       fismat.output(i).range = ranges(i,:); 

    end 

    % Set the input membership function labels 

    for i=1:numInp 

        for j=1:numRule     

            theStr = sprintf('in%gcluster%g',i,j); 

            fismat.input(i).mf(j).name = theStr; 

        end 

    end 

    % Set the output membership function labels 

    for i=1:numOutp 

        for j=1:numRule        

            theStr = sprintf('out%gcluster%g',i,j); 

            fismat.output(i).mf(j).name = theStr; 
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        end 

    end 

    % Set the input membership function types 

    for i=1:numInp  

       for j=1:numRule 

          fismat.input(i).mf(j).type = 'igaussmtype2'; 

       end

    end 

    % Set the output membership function types 

    for i=1:numOutp 

       for j=1:numRule 

          fismat.output(i).mf(j).type = 'linear'; 

       end

    end 

    % Set the input membership function parameters 

    for i=1:numInp 

       for j=1:numRule 

            fismat.input(i).mf(j).params = ... 

                [sigmas(j,i) centersAnt(j,i)-mSigma(j,i) centersAnt(j,i)+mSigma(j,i)]; 

       end 

    end 

    % Set the output membership function parameters 

    for i=1:numOutp 

        for j=1:numRule 

            lOutParams = reshape(lOutEqns(:,i),numInp + 1,numRule); 

            rOutParams = reshape(rOutEqns(:,i),numInp + 1,numRule); 

            params = (lOutParams(:,j)'+rOutParams(:,j)')/2; 

Appendix C 85



            outputSpread = ones(size(params)) .* 0.01; 

            fismat.output(i).mf(j).params = [params outputSpread]; 

        end 

    end 

    % Set the membership function pointers in the rule list 

    colOfEnum = (1:numRule)'; 

    for j=1:numRule 

       for i=1:numInp 

          fismat.rule(j).antecedent(i) = colOfEnum(j); 

       end 

       for i=1:numOutp    

          fismat.rule(j).consequent(i) = colOfEnum(j); 

       end 

      % Set the antecedent operators and rule weights in the rule 

       fismat.rule(j).weight=1; 

       fismat.rule(j).connection=1; 

    end 

end
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Appendix C.4

function [fis] = UBIGF_igaussstype2(trD1,trD2,numInputs,numOutputs,K) 

fis = newfistype2('IT2FIS','sugeno','prod','probor','prod','sum','cos'); 

%% Data normalization: [-1,1] 

maxX = max(max(trD1)); 

trD1 = trD1./maxX;  

%% Cluster analysis 

[centers,U] = fcm(trD1,K); 

%% Data de-normalization 

centers = centers .* maxX; 

trD1    = trD1.*maxX; 

rangeA1 = min(trD1(:,1:numInputs)); 

rangeB1 = max(trD1(:,1:numInputs)); 

[~,idx] = max(U); 

%% Build antecedents. First Pass 

for i=1:numInputs 

    rA = rangeA1(i); 

    rB = rangeB1(i); 

    fis = addvartype2(fis,'input',strcat('x',num2str(i)),[rA rB]); 

    for j=1:K 

        set = trD1(idx==j,:); 

        subset = set(:,i); 

        m = centers(j,i); 

        if size(set,1)==0 

            tempVar = max(trD1)-min(trD1); 

            s1 = tempVar(i)/100; 

        else 

            s1 = std(subset); 

        end 

        if s1==0 

            tempVar = max(trD1)-min(trD1); 

            s1 = tempVar(i)/100; 

        end 

        Flm = strcat(strcat('F',num2str(j)),num2str(i)); 

        fis = addmftype2(fis,'input',i,Flm,'igaussstype2',[s1 s1 m]); 

    end 
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end

%% Data normalization: [-1,1] 

maxX = max(max(trD2)); 

trD2 = trD2./maxX;  

%% Cluster analysis 

[centers,U] = fcm2(trD2,K,U); 

%% Data de-normalization 

centers = centers .* maxX; 

trD2    = trD2.*maxX; 

rangeA2 = min(trD2(:,1:numInputs)); 

rangeB2 = max(trD2(:,1:numInputs)); 

[~,idx] = max(U); 

%% Build antecedents. Second Pass 

for i=1:numInputs 

    fis.input(i).range(1) = min(fis.input(i).range(1),rangeA2(i)); 

    fis.input(i).range(2) = max(fis.input(i).range(2),rangeB2(i)); 

    for j=1:K 

        set    = trD2(idx==j,:); 

        subset = set(:,i); 

        m = centers(j,i); 

        tempVar = max(trD2)-min(trD2); 

        if size(set,1)==0 

            s2 = tempVar(i)/100; 

        else 

            s2 = std(subset); 

        end 

        if s2==0 
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            tempVar = max(trD1)-min(trD1); 

            s2 = tempVar(i)/100; 

        end 

        fis.input(i).mf(j).params(3) = (fis.input(i).mf(j).params(3) + m) / 2; 

        fis.input(i).mf(j).params(2) = s2; 

    end 

end

%% Build and initialize interval TSK consequents 

initParams = zeros(1,(numInputs+1)*2); 

for i=1:numOutputs 

    rA = min(rangeA1(i),rangeA2(i)); 

    rB = max(rangeB1(i),rangeB2(i)); 

    fis = addvartype2(fis,'output',strcat('y',num2str(i)),[rA rB]); 

end

for i=1:K 

    for j=1:numOutputs 

        Glm = strcat(strcat('G',num2str(j)),num2str(i)); 

        fis = addmftype2(fis,'output',j,Glm,'linear',initParams); 

    end 

end

%% Build rule list 

ruleList = ones(K, numInputs+numOutputs+2); 

for i = 2:1:K 

    ruleList(i,1:numInputs+numOutputs) = i;     

end

fis = addruletype2(fis,ruleList); 

%%  Optimize interval TSK consequents 

D = [trD1;trD2]; 

inD  = D(:,1:numInputs); 

outD = D(:,(numInputs+1):end); 

nVars = size(fis.output(1).mf(1).params,2) * fis.rule(end).antecedent(1) * 
size(fis.output,2); 

fis   = cuckoo_search(25,nVars,fis,inD,outD); 
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Appendix C.5

function set = gaussgaussGMF_A(x,card,primCenter,primSigma) 

    discretization = size(x,2); 

    secSigma = 0.1; 

    fu = gaussmf(card,[primSigma primCenter]);  % fu 

    u = linspace(0,1,discretization);           % u 

    fxu = zeros(discretization,discretization); % fxu 

    [X,Y] = meshgrid(x,u); 

    for i=1:size(card,1) 

        zTemp = exp( -((X-card(i)).^2 + (Y-fu(i)).^2) / (2*secSigma^2) ); 

        fxu = max(fxu,zTemp); 

    end 

    set.X{1} = x'; 

    for i=1:discretization 

        set.fXU{i} = [u' fxu(:,i)]; 

    end 
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Appendix C.6

function set = gaussgaussGMF_B(x,card,primCenter,primSigma) 

    discretization = size(x,2); 

    secSigma = 0.1; 

    fu = gaussmf(card,[primSigma primCenter]);  % fu 

    u = linspace(0,1,discretization);           % u 

    fxu = zeros(discretization,discretization); % fxu 

    [X,Y] = meshgrid(x,u); 

    for i=1:size(card,1) 

        sigmaTemp = secSigma * fu(i); 

        zTemp = exp( -((X-card(i)).^2 + (Y-fu(i)).^2) / (2*sigmaTemp^2) ); 

        fxu = max(fxu,zTemp); 

    end 

    set.X{1} = x'; 

    for i=1:discretization 

        set.fXU{i} = [u' fxu(:,i)]; 

    end 
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